
Summer Bridge Course: Algebra
Dr. Coykendall

Field: a field is an abelian group under addition:

1. a, b ∈ F =⇒ a+ b ∈ F

2. (a+ b) + c ∈ F =⇒ a+ (b+ b) ∈ F

3. ∃0 ∈ F s.t. a+ 0 = 0 + a,∀a ∈ F

4. ∀a ∈ F,∃ − a ∈ F s.t. a+−a = 0

5. a+ b = b+ a,∀a, b ∈ F

6. F \ {0} abelian under multiplication

7. ∀a, b, c ∈ F, a(b + c) = ab + ac and (a + b)c =
ac+ bc

characteristic: Let K be a field and 1K the mul-
tiplicative identity. char(K)=n if n is the smallest
natural number s.t. n1K = 1k + · · · + 1k = 0k.
char(K)=0 if no such n exists.
Gaussian Elimination: use to solve system of
equations over Q. Row reduce to get upper trian-
gular matrix, then solve. This can also be thought
of as multiplying coefficient matrix by a bunch of
elementary matrices.
Elementary Matrix: an n×n elementary matrix is
a matrix of the form In +A where A is a matrix with
only one non-zero entry (nondiagonal). Basically, all
the diagonal entries are 1 and all non-diagonal entries
are 0 with exactly one exception.
Permutation Matrix: a matrix with only 0’s and
1’s such that each row and column contain exactly
one 1.
nonsingular: a system of linear equations that has
a unique solution.
singular: a system of linear equations is not nonsin-
gular.
consistent: a system of linear equations with at
least one solution.
inconsistent: a system of linear equations with no
solutions.

Introduction

Invertible: a matrix A ∈ Fn×n is invertible if
∃B ∈ Fn×n s.t. AB = In = BA.
Theorem: If A is invertible, then the inverse of A is
unique.
Theorem: A1A2 · · ·Am invertible ⇐⇒ both
A1, A2, · · · , Am are invertible.
Theorem: A invertible ⇐⇒ Ax = 0 only has trivial
solution.
Theorem: Any product of elementary matrices is in-
vertible.
Theorem: Any permutation matrix is invertible.

Theorem: Consider A−→x =
−→
b and its augmented

matrix [A|
−→
b ]. If this can be reduced to [A′|

−→
b ′], then

A′−→x =
−→
b ′ has the same solution set as A−→x =

−→
b .

Theorem: An n× n system of linear equations over
F can be reduced to an upper triangular system.
Theorem: A product of upper (lower) triangular ma-
trices is upper (lower) triangular. The diagonal en-
tries are the the product of the respective diagonal
entries.
LU Decomposition: Let A ∈ Fn×n. Then
∃P,L, U ∈ Fn×n s.t.

• L is lower triangular with 1’s on diagonal.

• U is upper triangular.

• P is a permutation matrix

PA = LU .
How to LU: Row reduce A to an upper triangular
matrix (U), keeping track of the row swaps (P ) and
the scalar multiplications (L) as you go along.
Theorem: Let U ∈ Fn×n be upper triangular.
TFAE:

1. U is invertible.

2. All diagonal entries are nonzero.

3. U−→x =
−→
0 has only the trivial solution.

This is also true for lower triangular matrices.

Invertibility

Transpose: Let A = [aij ] ∈ Fm×n. The transpose
of A is AT = [aji] ∈ Fn×m.
Proposition: Let A,B ∈ Fm×n and CinFn×k.

• (AT )T = A

• (A+B)T = AT +BT

• (AC)T = CTAT

Theorem: Let A ∈ Fn×n. A is invertible ⇐⇒ AT is
invertible. Also, if A is invertible, (AT )−1 = (A−1)T .
Symmetric: A ∈ Fm×n is symmetric if A = AT .
Theorem: If A ∈ Fn×n is invertible and symmetric,
then A−1 is symmetric.

Transpose and Symmetric Matrices

Vector Space: a vector space V over the field F is
an abelian group...

1. ∀v, w ∈ V, v + w ∈ V

2. ∀u, v, w ∈ V, u+ (v + w) = (u+ v) + w

3. ∃0 ∈ V s.t. 0 + v = v + 0,∀v ∈ V

4. ∀v ∈ V,∃w ∈ V s.t.v + w = w + v = 0

5. v + w = w + v,∀v, w ∈ V

equipped with scalar multiplication from F ...

1. a(v + w) = av + aw,∀a ∈ F, v, w ∈ V

2. (a+ b)v = av + bv,∀a, b ∈ F, v ∈ V

3. a(bv) = (ab)v,∀a, binF, v ∈ V

4. 1F v = v,∀v ∈ V

Vector Spaces
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Subspace: Let V be a vector space over F . a subs-
pace of V , W , is a nonempty subset W ⊆ V s.t. it
itself is a vector space.
Theorem: Let W ⊆ V be a subset of V over F .
TFAE:

1. W is a subspace of V .

2. W 6= ∅ and W is closed under addition and sca-
lar multiplication.

3. W 6= ∅ and W is closed under linear combinati-
ons of the form av + bv (a, b ∈ F and wi ∈W ).

4. W 6= 0 and W is closed under linear combinati-
ons of the form

∑k
i=1 aiwi (ai ∈ F and wi ∈W ).

Proposition: A ∈ Fn×n is invertible iff N(A) = 0.

Vector Spaces Continued

Span: Let v1, v2, · · · , vn ∈ V and V a vector
space over F . Then SpanF (v1, v2, · · · , vn) =
{α1v1 + α2v2 + · · ·+ αnvn|αi ∈ F}
Proposition: Let V be a vector space over F .
Let v1, · · · , vn ∈ V . Then SpanF (v1, · · · , vn) is a
subspace of V .
Spanning Set:If v1, · · · , vn ∈ W ⊆ V and
SpanF (v1, · · · , vn) = W , we say v1, · · · , vb is a
spanning set of W .
Column Space:

Let A =


a11 · · · a1n
a21 · · · a2n
...

am1 · · · amn

 ∈ Fm×n.

Then Col(A) = SpanF (

 a11
...

am1

 , · · ·
 a1n

...
amn

)

Row Space: With same m× n matrix,
Row(A) = SpanF (

[
a11 a12 · · · a1n

]
, · · · ,[

am1 am2 · · · amn
]
)

Theorem: Let v1, · · · , vn ∈ V . Then
SpanF (v1, · · · vn) is a subspace of V containing
v1, · · · , vn.
Corollary: If A ∈ Fm×n, then Col(A) ⊆ Fm×1 and
Row(A) ⊆ F 1×n are subspaces.

Spanning Sets

Theorem: Let v1, · · · , vn ∈ V and W ⊆ V a subs-
pace. Then SpanF (v1, · · · , vn) ⊆W ⇐⇒ v1, · · · vn ∈
W .
Notation: Let v1, · · · , vn ∈ V . We write
v1, · · · v̂i, · · · , vn = {v1, · · · vi−1, vi+1, · · · , vn}. (So,
we only take out vi).
Corollary: SpanF (v1, · · · v̂i, · · · , vn) is a subspace of
SpanF (v1, · · · , vn).
Theorem: Let 0 6= W ⊆ V be a subspace. Then
∀0 6= v ∈W , we have |V | ≥ |W | ≥ |SpanF (v)| = |F |.
Theorem: Let A ∈ Fm×n. Then Col(A)={Ax ∈
Fm|x ∈ Fn} = {b ∈ Fm|∃x ∈ Fn s.t. b = Ax} =
{b ∈ Fm| the equation Ax = b is consistent }.
Theorem: Let A ∈ Fm×n and b ∈ Fm.

• The equation Ax = b is consistent iff b ∈ Col(A).

• Assume Ax = b is consistent and c a solution to
Ax = b. Then x is a solution iff x ∈ {c + y|y ∈
N(A)}

Corollary: Let A ∈ Fm×n and b ∈ Fm. If Ax = b
is consistent and c ∈ Fn is a solution, then the func-
tion Φ : N(A) → { solutions of Ax = n} given by
Φ(z) = c+ z is a well-defined bijection.
Corollary: Let A ∈ Fm×n and b ∈ Fm.

• If Ax = b is consistent and has more then one
solution, then the number of solutions is at least
|F |.

• The number of solutions to Ax = b is 0 (incon-
sistent), 1, or ≥ |F |.

Theorem: Let v1, · · · , vn ∈ V . TFAE:

1. SpanF (v1, · · · , vn) = SpanF (v1, · · · , v̂i, · · · , vn)

2. vi ∈ SpanF (v1, · · · , v̂i, · · · , vn)

3. ∃a1, · · · , ai−1, ai+1, · · · an ∈ F s.t. vi = a1v1 +
· · ·+ ai−1vi−1 + ai+1vi+1 + · · ·+ anvn

4. ∃b1, · · · , bn ∈ F , not all 0, s.t.
∑n
j=1 bjvj = 0

5. ∃c1, · · · , cn, d1, · · · dn ∈ F with ci 6= di and∑n
j=1 cjvj =

∑n
j=1 djvj .

Spanning Sets Continued

Linearly Independent: Let F be a field and V a
vector space over F . Let S ⊆ V be a subset. We say
S is linearly independent if any equation of the form
a1s1 + · · ·+ ansn = 0 =⇒ ai = 0,∀1 ≤ i ≤ n.
Linearly Dependent: A set is linearly dependent if
it is not linearly independent.
Note: If S = ∅, it is linearly independent.
Note: If you have the zero vector or two of the same
vectors in your set, the set is linearly dependent.
Theorem: {v1, · · · , vn} is linearly independent ⇐⇒
any rearrangement is also linearly independent.
Theorem: ∅ 6= S ⊆ V is linearly dependent ⇐⇒
∃s ∈ S s.t. s is a linear combination of some other
elements in S distinct from s.
Theorem: Let F be a field and v1, · · · , vn ∈ Fn, n ∈
N. We can form the matris A = [v1|v2| · · · |vn]. The
list of vectors is linearly independent iff N(A) = 0.
Remark: Let A ∈ Fn×n.

• If A is invertible and b ∈ Fn, then Ax = b has
a unique solution. (x = A−1b)

• TFAE:

1. A is invertible.

2. N(A) = 0.

3. Ax = 0 has a unique solution.

4. The columns of A are linearly independent.

5. The rows of AT are linearly independent.

Linear Independence
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Basis: A basis for V over F is a linearly independent
subset S ⊆ V s.t. SpanF (S) = V .
Theorem: The set S is a basis for V ⇐⇒ ∀v ∈
V,∃!b1, · · · , bn ∈ F s.t. v = b1v1 + · · ·+ bnvn for some
unique v1, · · · , vn ∈ S.
Note: A basis is the maximal linearly independent
subset.
Theorem: Let A ∈ Fn×n. TFAE:

1. A is invertible.

2. The columns of A form a basis for Fn.

3. The columns of A are linearly independent.

4. The columns of A span Fn.

Theorem: Let v1, · · · , vn ∈ V (not all 0). We
can reorder these vi’s so that for some k ≤ n,
the list v1, · · · , vk is linearly independent over F
and SpanF (v1, · · · , vk) = SpanF (v1, · · · , vn). More-
over, every maximal linearly independent sublist of
v1, · · · , vn is a basis for SpanF (v1, · · · , vn).
Theorem: Let L = (a1, · · · , an) be a linearly in-
dependent subset of V . Let S0 = (b1, · · · , bm) be a
spanning set of V , then n ≤ m.
Corollary: Let V be a vector space and L =
{u1, · · · , um} and M = {v1, · · · , vn} be bases of V .
Then, n = m.

Bases

Dimension

Comparison Tests

1. If |xn| ≤ cn,∀n ≥ n0, where n0 is fixed, then∑∞
k=1 ck <∞ =⇒

∑∞
k=1 xk <∞.

2. If ak ≥ 0, bk ≥ 0 and ak ≥ bk,∀k ≥ n0
(n0 fixed), then

∑∞
k=1 bk = +∞ =⇒∑∞

k=1 ak = +∞.

Limit Comparison Tests: Suppose ak ≥ 0 and
bk ≥ 0. Then,

1. If limk→∞
ak
bk

= L, 0 < L <∞, then
∑∞
k=1 ak <

∞ ⇐⇒
∑∞
k=1 bk <∞.

2. If limk→∞
ak
bk

= 0 and
∑∞
k=1 bk < ∞, then∑∞

k=1 ak <∞.

Integral Test: Let {ak} be a decreasing sequence
of nonnegative real numbers (a1 ≥ a2 ≥ · · · ≥ an ≥
· · · ≥ 0). Let f(x) : [1,∞) → R and f(x) ≥ 0 such
that f is monotone decreasing and f(k) = ak,∀k ∈ N.
Then

∑∞
k=1 ak <∞ iff

∫∞
1
f(x)dx <∞.

Root Test: Given
∑∞
k=1 ak, let α = limn→∞

n
√
|an|.

1. If α < 1, then
∑∞
k=1 ak converges.

2. If α > 1, then
∑∞
k=1 ak diverges.

3. If α = 1, then the test is inconclusive.

Ratio Test: The series
∑∞
k=1 ak

1. converges if α = limn→∞|an+1

an
| < 1.

2. diverges if |an+1|
an
≥ 1,∀n ≥ n0 for some n0 ∈ N.

Alternating Series Test: If {bn} ⊆ R such that

1. b1 ≥ b2 ≥ · · · ≥ bn ≥ bn+1 ≥ · · · ≥ 0

2. limn→∞ bn = 0

then
∑

(−1)k+1bk converges.
Absolute Convergence:

∑
ak converges absolutely

if
∑
|ak| <∞.

Theorem: If
∑
ak converges absolutely,

∑
ak

converges.

Convergence Tests for Series
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Geometric p-Series n log(n)∑∞
k=1 x

k
∑∞
n=1

1
np

∑∞
n=2

1
n(log(n))p

converges 0 ≤ x < 1 p > 1 p > 1
diverges x ≥ 1 p ≤ 1 p ≤ 1

Important Known Series:

Limit at a point: Given L ∈ R, limx→a f(x) = L if
∀ε > 0,∃δ(f, ε, a) > 0 such that |f(x) − L| < ε whe-
never 0 < |x− a| < δ.
Theorem: Let f be a real-valued function defined in
some neighborhood a ∈ R (including a). Then,

1. f is continuous at a.
(∀ε > 0,∃δ > 0 s.t. |f(x) − f(a)| < ε if
|x− a| < δ).

2. f(xn)→ f(a) = L whenever xn → a.

Proof Outline: To show limx→a f(x) = f(a):

1. Do scratch work to find appropriate δ by finding
|f(x)− f(a)| < (term involving |x− a|) < ε.

2. Note that sometimes you need to chose δ to be
a minimum of two things to make the inequality
true. Be careful!

3. Write out proof and include scratch work.

Right Limit: limx→a+ f(x) = L+ is the right limit
if ∀ε > 0,∃δ(f, a, ε) > 0 such that |f(x) − L+| < ε if
a < x < a+ δ.
Left Limit: limx→a− f(x) = L− is the left limit if
∀ε > 0,∃δ(f, a, ε) > 0 such that |f(x) − L−| < ε if
a− δ < x < a.
Continuous at a: f is continuous at a if
f(a+) = limx→a+ f(x) = limx→a− f(x) = f(a−)
Facts: If f, g are continuous functions at a, then

• f + g is continuous at a.

• fg is continuous at a.

• 1
g is continuous at a (g(x) 6= 0)

Composition Continuity: f : A → R, g : B → R,
and Range(f) ⊆ B. If f is continuous at a and g
is continuous at f(a), then g ◦ f(x) = g(f(x)) is
continuous at a.

Continuous Functions:

Uniform Continuous: f : A ⊆ R → R. f is uni-
formly continuous on A if ∀ε > 0,∃δ(f,A, ε) > 0 such
that |f(x)− f(y)| < ε whenever |x− y| < δ.
(Note: δ does NOT depend on a)
Lipschitz Continuous: f : A → R is Lipschitz
continuous if ∃M > 0 such that |f(x) − f(y)| ≤
M |x− y|,∀x, y ∈ A.
Fact: Lipschitz =⇒ uniform =⇒ continuous
Theorem: If f : K → R, K ⊆ R compact, and f
continuous on K, then f is uniformly continuous.
Monotone Increasing: f is monotone increasing if
f(x) ≤ f(y),∀x < y. (Strictly if f(x) < f(y))
Monotone Decreasing: f is monotone decreasing
if f(x) ≥ f(y),∀x < y. (Strictly if f(x) < f(y))
Theorem: If f : I → R monotone increasing on
I, then f(p+) and f(p−) exists for all p ∈ I and
supx<p f(x) = f(p−) ≤ f(p) ≤ f(p+) = infx>p f(x).

Continuous Functions Continued:

Pointwise Limit: Let x0 be fixed in E. Then
{fn(x0)} ⊆ R. Let f(x0) = nx0 . Let {fn(x0)} be a
sequence of functions such that f : E → R, then we
say fn converges pointwise on E to f if
∀ε > 0,∃n0(ε, x0) s.t. |fn(x0) − f(x0)| < ε, ∀n ≥ n0.
So, limn→∞ fn(x0) = f(x0), x0 ∈ E.
Note: Interchangeability of limits, differentiation,
and integration is not necessarily true when you
just have pointwise continuity. You need something
stronger. (Uniform continuity).
Uniform Convergence (Sequence):
a sequence fn : E → R converges uniformly on E to
f if ∀ε > 0,∃n0(ε) s.t. |fn(x)− f(x)| < ε,
∀n ≥ n0,∀x ∈ E.
(Note: n0 is independent of x ∈ E)
Uniform Convergence (Series):
a series

∑∞
n=0 fn(x); fn : E → R uniformly

converges in E iff the sequence of partial sums
(Sk(x) =

∑k
n=0 fn(x)) are uniformly converging to

S(x).
Uniformly Cauchy: a sequence of functions
{fn(x)}; fnE → R is uniformly Cauchy if ∀ε <
0,∃n0(ε) s.t |fn(x)− fm(x)| < ε,∀n,m ≥ n0,∀x ∈ E.

Sequences and Series of Functions:

Sup Norm:

• ‖f‖∞ = ‖f‖uniform = ‖f‖sup = supx∈K |f(x)|.

• E = K compact =⇒ ‖f‖∞ = maxx∈K |f(x)|.

Sup Norm Convergence: a sequence of functi-
ons {fn}; fn : E → R converges in the sup norm
on E if ∀ε > 0,∃n0(ε) such that ‖fn − fm‖∞ =
supx∈E |fn(x)− f(x)| < ε,∀n > n0.
Theorem: For a sequence of functions,

Uniform Convergence

⇐⇒ Uniformly Cauchy

⇐⇒ Sup Norm Convergence

Theorem: fn : E → R and fn ∈ C(E).
If fn converges uniformly to f on E, then f ∈ C(E).
(Note: To prove this theorem, you use the ε

3 trick!)
Corollary: If {fn} ⊆ (C(E), ‖ · ‖∞) is Cauchy, then
fn converges uniformly to f on E =⇒ f ∈ C(E) =⇒
(C(E), ‖ · ‖∞) is complete.

Sequences and Series of Functions Continued:
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