Summer Bridge Course: Algebra

Dr. Coykendall

Introduction

Field: a field is an abelian group under addition:

- 1. $a, b \in F \implies a + b \in F$
- $2. \ (a+b)+c\in F \implies a+(b+b)\in F$
- 3. $\exists 0 \in F \text{ s.t. } a + 0 = 0 + a, \forall a \in F$
- 4. $\forall a \in F, \exists -a \in F \text{ s.t. } a+-a=0$
- 5. $a+b=b+a, \forall a,b\in F$
- 6. $F \setminus \{0\}$ abelian under multiplication
- 7. $\forall a, b, c \in F, a(b+c) = ab + ac$ and (a+b)c = ac + bc

characteristic: Let K be a field and 1_K the multiplicative identity. $\operatorname{char}(K)=n$ if n is the smallest natural number s.t. $n1_K=1_k+\cdots+1_k=0_k$. $\operatorname{char}(K)=0$ if no such n exists.

Gaussian Elimination: use to solve system of equations over \mathbb{Q} . Row reduce to get upper triangular matrix, then solve. This can also be thought of as multiplying coefficient matrix by a bunch of elementary matrices.

Elementary Matrix: an $n \times n$ elementary matrix is a matrix of the form $I_n + A$ where A is a matrix with only one non-zero entry (nondiagonal). Basically, all the diagonal entries are 1 and all non-diagonal entries are 0 with exactly one exception.

Permutation Matrix: a matrix with only 0's and 1's such that each row and column contain exactly one 1.

nonsingular: a system of linear equations that has a unique solution.

singular: a system of linear equations is not nonsingular.

consistent: a system of linear equations with at least one solution.

inconsistent: a system of linear equations with no solutions.

Invertibility

Invertible: a matrix $A \in F^{n \times n}$ is invertible if $\exists B \in F^{n \times n}$ s.t. $AB = I_n = BA$.

Theorem: If A is invertible, then the inverse of A is unique.

Theorem: $A_1 A_2 \cdots A_m$ invertible \iff both A_1, A_2, \cdots, A_m are invertible.

Theorem: A invertible \iff Ax = 0 only has trivial solution.

Theorem: Any product of elementary matrices is invertible.

Theorem: Any permutation matrix is invertible. **Theorem:** Consider $A\overrightarrow{x} = \overrightarrow{b}$ and its augmented matrix $[A|\overrightarrow{b}]$. If this can be reduced to $[A'|\overrightarrow{b'}]$, then $A'\overrightarrow{x} = \overrightarrow{b'}$ has the same solution set as $A\overrightarrow{x} = \overrightarrow{b}$.

Theorem: An $n \times n$ system of linear equations over F can be reduced to an upper triangular system.

Theorem: A product of upper (lower) triangular matrices is upper (lower) triangular. The diagonal entries are the product of the respective diagonal entries.

LU Decomposition: Let $A \in F^{n \times n}$. Then $\exists P, L, U \in F^{n \times n}$ s.t.

- ullet L is lower triangular with 1's on diagonal.
- *U* is upper triangular.
- P is a permutation matrix

PA = LU.

How to LU: Row reduce A to an upper triangular matrix (U), keeping track of the row swaps (P) and the scalar multiplications (L) as you go along.

Theorem: Let $U \in F^{n \times n}$ be upper triangular. TFAE:

- 1. *U* is invertible.
- 2. All diagonal entries are nonzero.
- 3. $U\overrightarrow{x} = \overrightarrow{0}$ has only the trivial solution.

This is also true for lower triangular matrices.

Transpose and Symmetric Matrices

Transpose: Let $A = [a_{ij}] \in F^{m \times n}$. The transpose of A is $A^T = [a_{ii}] \in F^{n \times m}$.

Proposition: Let $A, B \in F^{m \times n}$ and $CinF^{n \times k}$.

- $\bullet \ (A^T)^T = A$
- $\bullet \ (A+B)^T = A^T + B^T$
- $(AC)^T = C^T A^T$

Theorem: Let $A \in F^{n \times n}$. A is invertible $\iff A^T$ is invertible. Also, if A is invertible, $(A^T)^{-1} = (A^{-1})^T$. **Symmetric:** $A \in F^{m \times n}$ is symmetric if $A = A^T$.

Theorem: If $A \in F^{n \times n}$ is invertible and symmetric, then A^{-1} is symmetric.

Vector Spaces

Vector Space: a vector space V over the field F is an abelian group...

- 1. $\forall v, w \in V, v + w \in V$
- 2. $\forall u, v, w \in V, u + (v + w) = (u + v) + w$
- 3. $\exists 0 \in V \text{ s.t. } 0 + v = v + 0, \forall v \in V$
- 4. $\forall v \in V, \exists w \in V \text{ s.t.} v + w = w + v = 0$
- 5. $v + w = w + v, \forall v, w \in V$

equipped with scalar multiplication from F...

- 1. $a(v+w) = av + aw, \forall a \in F, v, w \in V$
- 2. $(a+b)v = av + bv, \forall a, b \in F, v \in V$
- 3. $a(bv) = (ab)v, \forall a, bin F, v \in V$
- $4. \ 1_F v = v, \forall v \in V$

Vector Spaces Continued

Subspace: Let V be a vector space over F. a subspace of V, W, is a nonempty subset $W \subseteq V$ s.t. it itself is a vector space.

Theorem: Let $W \subseteq V$ be a subset of V over F. TFAE:

- 1. W is a subspace of V.
- 2. $W \neq \emptyset$ and W is closed under addition and scalar multiplication.
- 3. $W \neq \emptyset$ and W is closed under linear combinations of the form av + bv $(a, b \in F \text{ and } w_i \in W)$.
- 4. $W \neq 0$ and W is closed under linear combinations of the form $\sum_{i=1}^{k} a_i w_i$ $(a_i \in F \text{ and } w_i \in W)$.

Proposition: $A \in F^{n \times n}$ is invertible iff N(A) = 0.

Spanning Sets

Span: Let $v_1, v_2, \cdots, v_n \in V$ and V a vector space over F. Then $\operatorname{Span}_F(v_1, v_2, \cdots, v_n) = \{\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n | \alpha_i \in F\}$

Proposition: Let V be a vector space over F. Let $v_1, \dots, v_n \in V$. Then $\operatorname{Span}_F(v_1, \dots, v_n)$ is a subspace of V.

Spanning Set:If $v_1, \dots, v_n \in W \subseteq V$ and $\operatorname{Span}_F(v_1, \dots, v_n) = W$, we say v_1, \dots, v_b is a spanning set of W.

Column Space:

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & & & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \in F^{m \times n}.$$

Then
$$Col(A) = \operatorname{Span}_F\left(\left[\begin{array}{c} a_{11} \\ \vdots \\ a_{m1} \end{array} \right], \cdots \left[\begin{array}{c} a_{1n} \\ \vdots \\ a_{mn} \end{array} \right] \right)$$

Row Space: With same $m \times n$ matrix,

$$Row(A) = \operatorname{Span}_F(\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}, \cdots, \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix})$$

Theorem: Let $v_1, \dots, v_n \in V$. Then $\operatorname{Span}_F(v_1, \dots v_n)$ is a subspace of V containing v_1, \dots, v_n .

Corollary: If $A \in F^{m \times n}$, then $Col(A) \subseteq F^{m \times 1}$ and $Row(A) \subseteq F^{1 \times n}$ are subspaces.

Spanning Sets Continued

Theorem: Let $v_1, \dots, v_n \in V$ and $W \subseteq V$ a subspace. Then $\operatorname{Span}_F(v_1, \dots, v_n) \subseteq W \iff v_1, \dots v_n \in W$.

Notation: Let $v_1, \dots, v_n \in V$. We write $v_1, \dots, \hat{v_i}, \dots, v_n = \{v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n\}$. (So, we only take out v_i).

Corollary: Span_F $(v_1, \dots, \hat{v_i}, \dots, v_n)$ is a subspace of Span_F (v_1, \dots, v_n) .

Theorem: Let $0 \neq W \subseteq V$ be a subspace. Then $\forall 0 \neq v \in W$, we have $|V| \geq |W| \geq |\operatorname{Span}_F(v)| = |F|$. **Theorem:** Let $A \in F^{m \times n}$. Then $\operatorname{Col}(A) = \{Ax \in F^m | x \in F^n\} = \{b \in F^m | \exists x \in F^n \text{ s.t. } b = Ax\} = \{b \in F^m | \text{ the equation } Ax = b \text{ is consistent } \}$.

Theorem: Let $A \in F^{m \times n}$ and $b \in F^m$.

- The equation Ax = b is consistent iff $b \in Col(A)$.
- Assume Ax = b is consistent and c a solution to Ax = b. Then x is a solution iff $x \in \{c + y | y \in N(A)\}$

Corollary: Let $A \in F^{m \times n}$ and $b \in F^m$. If Ax = b is consistent and $c \in F^n$ is a solution, then the function $\Phi : N(A) \to \{ \text{ solutions of } Ax = n \}$ given by $\Phi(z) = c + z$ is a well-defined bijection.

Corollary: Let $A \in F^{m \times n}$ and $b \in F^m$.

- If Ax = b is consistent and has more then one solution, then the number of solutions is at least |F|.
- The number of solutions to Ax = b is 0 (inconsistent), 1, or $\geq |F|$.

Theorem: Let $v_1, \dots, v_n \in V$. TFAE:

- 1. $\operatorname{Span}_F(v_1, \dots, v_n) = \operatorname{Span}_F(v_1, \dots, \hat{v}_i, \dots, v_n)$
- 2. $v_i \in \operatorname{Span}_F(v_1, \dots, \hat{v}_i, \dots, v_n)$
- 3. $\exists a_1, \dots, a_{i-1}, a_{i+1}, \dots a_n \in F \text{ s.t. } v_i = a_1 v_1 + \dots + a_{i-1} v_{i-1} + a_{i+1} v_{i+1} + \dots + a_n v_n$
- 4. $\exists b_1, \dots, b_n \in F$, not all 0, s.t. $\sum_{i=1}^n b_i v_i = 0$
- 5. $\exists c_1, \dots, c_n, d_1, \dots d_n \in F \text{ with } c_i \neq d_i \text{ and } \sum_{j=1}^n c_j v_j = \sum_{j=1}^n d_j v_j.$

Linear Independence

Linearly Independent: Let F be a field and V a vector space over F. Let $S \subseteq V$ be a subset. We say S is linearly independent if any equation of the form $a_1s_1 + \cdots + a_ns_n = 0 \implies a_i = 0, \forall 1 \le i \le n$.

Linearly Dependent: A set is linearly dependent if it is not linearly independent.

Note: If $S = \emptyset$, it is linearly independent.

Note: If you have the zero vector or two of the same vectors in your set, the set is linearly dependent.

Theorem: $\{v_1, \dots, v_n\}$ is linearly independent \iff any rearrangement is also linearly independent.

Theorem: $\emptyset \neq S \subseteq V$ is linearly dependent $\iff \exists s \in S \text{ s.t. } s \text{ is a linear combination of some other elements in } S \text{ distinct from } s.$

Theorem: Let F be a field and $v_1, \dots, v_n \in F^n, n \in \mathbb{N}$. We can form the matris $A = [v_1|v_2|\dots|v_n]$. The list of vectors is linearly independent iff N(A) = 0. **Remark:** Let $A \in F^{n \times n}$.

- If A is invertible and $b \in F^n$, then Ax = b has a unique solution. $(x = A^{-1}b)$
- TFAE:
 - 1. A is invertible.
 - 2. N(A) = 0.
 - 3. Ax = 0 has a unique solution.
 - 4. The columns of A are linearly independent.
 - 5. The rows of A^T are linearly independent.

Bases

Basis: A basis for V over F is a linearly independent subset $S \subseteq V$ s.t. $\operatorname{Span}_F(S) = V$.

Theorem: The set S is a basis for $V \iff \forall v \in V, \exists! b_1, \dots, b_n \in F$ s.t. $v = b_1 v_1 + \dots + b_n v_n$ for some unique $v_1, \dots, v_n \in S$.

Note: A basis is the maximal linearly independent subset.

Theorem: Let $A \in F^{n \times n}$. TFAE:

- 1. A is invertible.
- 2. The columns of A form a basis for F^n .
- 3. The columns of A are linearly independent.
- 4. The columns of A span F^n .

Theorem: Let $v_1, \dots, v_n \in V$ (not all 0). We can reorder these v_i 's so that for some $k \leq n$, the list v_1, \dots, v_k is linearly independent over F and $\operatorname{Span}_F(v_1, \dots, v_k) = \operatorname{Span}_F(v_1, \dots, v_n)$. Moreover, every maximal linearly independent sublist of v_1, \dots, v_n is a basis for $\operatorname{Span}_F(v_1, \dots, v_n)$.

Theorem: Let $L = (a_1, \dots, a_n)$ be a linearly independent subset of V. Let $S_0 = (b_1, \dots, b_m)$ be a spanning set of V, then $n \leq m$.

Corollary: Let V be a vector space and $L = \{u_1, \dots, u_m\}$ and $M = \{v_1, \dots, v_n\}$ be bases of V. Then, n = m.

Dimension

Convergence Tests for Series

Comparison Tests

- 1. If $|x_n| \le c_n, \forall n \ge n_0$, where n_0 is fixed, then $\sum_{k=1}^{\infty} c_k < \infty \implies \sum_{k=1}^{\infty} x_k < \infty$.
- 2. If $a_k \ge 0, b_k \ge 0$ and $a_k \ge b_k, \forall k \ge n_0$ $(n_0 \text{ fixed})$, then $\sum_{k=1}^{\infty} b_k = +\infty$ \Longrightarrow $\sum_{k=1}^{\infty} a_k = +\infty$.

Limit Comparison Tests: Suppose $a_k \geq 0$ and $b_k \geq 0$. Then,

- 1. If $\lim_{k \to \infty} \frac{a_k}{b_k} = L$, $0 < L < \infty$, then $\sum_{k=1}^{\infty} a_k < \infty$ $\iff \sum_{k=1}^{\infty} b_k < \infty$.
- 2. If $\lim_{k\to\infty} \frac{a_k}{b_k} = 0$ and $\sum_{k=1}^{\infty} b_k < \infty$, then $\sum_{k=1}^{\infty} a_k < \infty$.

Integral Test: Let $\{a_k\}$ be a decreasing sequence of nonnegative real numbers $(a_1 \geq a_2 \geq \cdots \geq a_n \geq \cdots \geq 0)$. Let $f(x) : [1, \infty) \to \mathbb{R}$ and $f(x) \geq 0$ such that f is monotone decreasing and $f(k) = a_k, \forall k \in \mathbb{N}$. Then $\sum_{k=1}^{\infty} a_k < \infty$ iff $\int_{1}^{\infty} f(x) dx < \infty$.

Root Test: Given $\sum_{k=1}^{\infty} a_k$, let $\alpha = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$.

- 1. If $\alpha < 1$, then $\sum_{k=1}^{\infty} a_k$ converges.
- 2. If $\alpha > 1$, then $\sum_{k=1}^{\infty} a_k$ diverges.
- 3. If $\alpha = 1$, then the test is inconclusive.

Ratio Test: The series $\sum_{k=1}^{\infty} a_k$

- 1. converges if $\alpha = \overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$.
- 2. diverges if $\frac{|a_{n+1}|}{a_n} \geq 1, \forall n \geq n_0$ for some $n_0 \in \mathbb{N}$.

Alternating Series Test: If $\{b_n\} \subseteq \mathbb{R}$ such that

- 1. $b_1 \ge b_2 \ge \dots \ge b_n \ge b_{n+1} \ge \dots \ge 0$
- $2. \lim_{n\to\infty} b_n = 0$

then $\sum (-1)^{k+1}b_k$ converges.

Absolute Convergence: $\sum a_k$ converges absolutely if $\sum |a_k| < \infty$.

Theorem: If $\sum a_k$ converges absolutely, $\sum a_k$ converges.

Important Known Series:

	Geometric	p-Series	$n\log(n)$
	$\sum_{k=1}^{\infty} x^k$	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	$\sum_{n=2}^{\infty} \frac{1}{n(\log(n))^p}$
converges	$0 \le x < 1$	p > 1	p > 1
diverges	$x \ge 1$	$p \leq 1$	$p \leq 1$

Continuous Functions:

Limit at a point: Given $L \in \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if $\forall \epsilon > 0, \exists \delta(f, \epsilon, a) > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$.

Theorem: Let f be a real-valued function defined in some neighborhood $a \in \mathbb{R}$ (including a). Then,

- 1. f is continuous at a. $(\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } |f(x) f(a)| < \epsilon \text{ if } |x a| < \delta).$
- 2. $f(x_n) \to f(a) = L$ whenever $x_n \to a$.

Proof Outline: To show $\lim_{x\to a} f(x) = f(a)$:

- 1. Do scratch work to find appropriate δ by finding $|f(x) f(a)| < (\text{term involving } |x a|) < \epsilon$.
- 2. Note that sometimes you need to chose δ to be a minimum of two things to make the inequality true. Be careful!
- 3. Write out proof and include scratch work.

Right Limit: $\lim_{x \to a^+} f(x) = L^+$ is the right limit if $\forall \epsilon > 0, \exists \delta(f, a, \epsilon) > 0$ such that $|f(x) - L^+| < \epsilon$ if $a < x < a + \delta$.

Left Limit: $\lim_{x\to a^-} f(x) = L^-$ is the left limit if $\forall \epsilon > 0, \exists \delta(f, a, \epsilon) > 0$ such that $|f(x) - L^-| < \epsilon$ if $a - \delta < x < a$.

Continuous at a: f is continuous at a if $f(a^+) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a^-)$

Facts: If f, q are continuous functions at a, then

- f + g is continuous at a.
- fg is continuous at a.
- $\frac{1}{g}$ is continuous at $a (g(x) \neq 0)$

Composition Continuity: $f: A \to \mathbb{R}$, $g: B \to \mathbb{R}$, and Range $(f) \subseteq B$. If f is continuous at a and g is continuous at f(a), then $g \circ f(x) = g(f(x))$ is continuous at a.

Continuous Functions Continued:

Uniform Continuous: $f: A \subseteq \mathbb{R} \to \mathbb{R}$. f is uniformly continuous on A if $\forall \epsilon > 0, \exists \delta(f, A, \epsilon) > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$. (Note: δ does NOT depend on a)

Lipschitz Continuous: $f: A \to \mathbb{R}$ is Lipschitz continuous if $\exists M > 0$ such that $|f(x) - f(y)| \le M|x - y|, \forall x, y \in A$.

Fact: Lipschitz \implies uniform \implies continuous

Theorem: If $f: K \to \mathbb{R}$, $K \subseteq \mathbb{R}$ compact, and f continuous on K, then f is uniformly continuous.

Monotone Increasing: f is monotone increasing if $f(x) \le f(y), \forall x < y$. (Strictly if f(x) < f(y))

Monotone Decreasing: f is monotone decreasing if $f(x) \ge f(y), \forall x < y$. (Strictly if f(x) < f(y))

Theorem: If $f: I \to \mathbb{R}$ monotone increasing on I, then $f(p^+)$ and $f(p^-)$ exists for all $p \in I$ and $\sup_{x \le p} f(x) = f(p^-) \le f(p) \le f(p^+) = \inf_{x > p} f(x)$.

Sequences and Series of Functions:

Pointwise Limit: Let x_0 be fixed in E. Then $\{f_n(x_0)\}\subseteq \mathbb{R}$. Let $f(x_0)=n_{x_0}$. Let $\{f_n(x_0)\}$ be a sequence of functions such that $f:E\to\mathbb{R}$, then we say f_n converges pointwise on E to f if

 $\forall \epsilon > 0, \exists n_0(\epsilon, x_0) \text{ s.t. } |f_n(x_0) - f(x_0)| < \epsilon, \forall n \geq n_0.$ So, $\lim_{n \to \infty} f_n(x_0) = f(x_0), x_0 \in E.$

Note: Interchangeability of limits, differentiation, and integration is not necessarily true when you just have pointwise continuity. You need something stronger. (Uniform continuity).

Uniform Convergence (Sequence):

a sequence $f_n: E \to \mathbb{R}$ converges uniformly on E to f if $\forall \epsilon > 0, \exists n_0(\epsilon)$ s.t. $|f_n(x) - f(x)| < \epsilon$, $\forall n \geq n_0, \forall x \in E$.

(Note: n_0 is independent of $x \in E$)

Uniform Convergence (Series):

a series $\sum_{n=0}^{\infty} f_n(x)$; $f_n: E \to \mathbb{R}$ uniformly converges in E iff the sequence of partial sums $(S_k(x) = \sum_{n=0}^k f_n(x))$ are uniformly converging to S(x).

Uniformly Cauchy: a sequence of functions $\{f_n(x)\}$; $f_nE \to \mathbb{R}$ is uniformly Cauchy if $\forall \epsilon < 0, \exists n_0(\epsilon) \text{ s.t } |f_n(x) - f_m(x)| < \epsilon, \forall n, m \geq n_0, \forall x \in E.$

Sequences and Series of Functions Continued:

Sup Norm:

- $||f||_{\infty} = ||f||_{\text{uniform}} = ||f||_{\sup} = \sup_{x \in K} |f(x)|.$
- $E = K \text{ compact } \Longrightarrow ||f||_{\infty} = \max_{x \in K} |f(x)|.$

Sup Norm Convergence: a sequence of functions $\{f_n\}$; $f_n: E \to \mathbb{R}$ converges in the sup norm on E if $\forall \epsilon > 0, \exists n_0(\epsilon)$ such that $||f_n - f_m||_{\infty} = \sup_{x \in E} |f_n(x) - f(x)| < \epsilon, \forall n > n_0$.

Theorem: For a sequence of functions,

Uniform Convergence

← Uniformly Cauchy

 \iff Sup Norm Convergence

Theorem: $f_n: E \to \mathbb{R}$ and $f_n \in C(E)$. If f_n converges uniformly to f on E, then $f \in C(E)$. (Note: To prove this theorem, you use the $\frac{\epsilon}{3}$ trick!) **Corollary:** If $\{f_n\} \subseteq (C(E), \|\cdot\|_{\infty})$ is Cauchy, then f_n converges uniformly to f on $E \Longrightarrow f \in C(E) \Longrightarrow (C(E), \|\cdot\|_{\infty})$ is complete.